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Motivation

Communications 14, 6%
Commerical Facilities 7, 3%
Chemical 4, 2%

Unknown 6, 2%

Water 14, 6%

Miscellaneous 21, 9%
Weak Authentication 13, 5%

Network Scanning/Probing 53, 22%

Transportation 12, 5% Removable Media 5, 2%

Nuclear 6, 2% Brute Force Intrusion 3, 1%

Information Technology 5, 2% Abuse of Access Authority 9, 4%

Healthcare 15, 6%

Unknown 94, 38%

Spear Phishing 42, 17%
Government Facilities 13, 5%

Finance 3, 1% < Energy 79, 32%
Foodand Ag 2, 1%

SQL Injection 5, 2%

Energy sector tops US ICS-CERT reported 245
Industries under attack incidents
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Overarching Approach: More than “being compliant”
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Summary of Previous Work

 Hardware-in-the-loop Network Analysis for Critical
Infrastructure Protection (UNC Charlotte)

 Multi-layer Data-driven Reasoning Tool for Anomaly
Detection and Causality Analysis (NC State)
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Critical Infrastructure Protection
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List of Assets and Control Levers

Item Asset Description Spedifications W
1 SRCDOR Dorsey generation 230kV, 4350MVA
2 DORTRF1 | Dorsey single phase auto 230/46/500kV, Transformer
transformer 1 with static 1200MVA, 138uF breaker control
capadtor compensation on
46KV side
3 DORTRF2 | Dorsey single phase auto 230/46/500kV, Transformer
transformer 2 with static 1200MVA,138pF differential
capacitor compensation on protection
46KV side
4 D602 and | Dorsey main breaker and 500kV, 60002 Breaker control
DBO2PRE | pre-insertion resistor
o prerl o 5  LINE Dorsey line reactor 11110 + 4250,
b REACTOR 225MVAr
argo : 6  dorros Dorsey to Roseau 3.74 +76.590),
& ot SNAT transmission line X, =9120), 226km
Minnesota 7  SCAPROS | Roseau series capacitor 31.9pF, 50% series Metal Oxide
compensation Varistor (MOV) and
bypass switch
8  rosfor Roseau to Forbes 5.23 +1100),
Watertowr M'""'i;""""" ol et transmission line X. = 6880, 311km
" Eagan ; A 9  MPL230 | Forbes generation 230kV
Wisconsin -SSR 10 FORTRFL | Forbes single phase 230/34.5/500kV,
transformer 1 with series B00MVA, 20000
resistance load on 34.5kV
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Laboratory Demonstration Setup
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Fault Simulation Results with RTDS

Fault is located at Roseau causing the Dorsey side distance relay protection to activate

172U 2:2V 3220 4ms Trig: 11 =2 U ouBY -3-2V A I RguE

Yellow: 230kV bus at Dorsey Blue: 500kV bus at Forbes Pink: 345kV bus at Chisag
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Power Flow Analysis Results with RTDS

* Operate under light load, bypass series
capacitors and overcompensate

* Operate under heavy load,
undercompensate, request higher voltage
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Real Power Demand 100MW 300MW
Shunt + Series Very High High Optimal
Compensation Compensation Compensation Compensation
Only Series (No High Optimal Low
Shunt) Compensation Compensation Compensation Compensation
Medium High twist in | Medium Low twist in Low twist in

No Compensation

system voltages
Voltages at Roseau
above 8% over-
voltage limit.
Voltages at Chisago
below 3% under-
voltage limit.

system voltages
Voltages at Roseau
above 7% over-
voltage limit.
Voltages at Chisago
below 2% under-
voltage limit.

system voltages
Voltages at Roseau

above 5% over-
voltage limit.
Voltages at Chisago
below 1% under-
voltage limit.

Only Shunt (No
Series) Compensation

High twist in
system voltages
Voltages at Roseau
above 10% over-
voltage limit.
Voltages at Chisago
below 6% under-

Medium High twist in

Medium Low twist in

system voltages
Voltages at Roseau
above 9% over-
voltage limit.
Voltages at Chisago
below 5% under-

system voltages
Voltages at Roseau

above 8% over-
voltage limit.
Voltages at Chisago
below 4% under-

voltage limit. voltage limit. voltage limit.
Real Power Demand 100MW 300MW
Variable Shunt + V. =0.86 VL =0.86
Series Compensation Vy.=1.04 VL =1.02
Only Variable Shunt VL =0.88 VL. =0.88
No Seri
(No Series) Vo= 1.10 Vo= 1.04

Compensation




Summary of Previous Work

 Hardware-in-the-loop Network Analysis for Critical
Infrastructure Protection (UNC Charlotte)

 Multi-layer Data-driven Reasoning Tool for Anomaly
Detection and Causality Analysis (NC State)
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M-DART Project: Multi-layer Data Anomaly Analysis

Smart Grid Information Layers e . ”
Data has “finger prints” too.
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A A Meter A A
Data collected from different

sources can be used to verify
each other.

CAPER Smart Grid Physical Layers



Step 1. Data Quality Quantification for Each Data Steam
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What is unique in DQQ?

Pay special attention to:
* Missing data

e Qutliers

e Bad data

“Good data sets” are
selected for analysis so
they don’t contaminate
results.

“Bad data sets” reveals
more information fro
cyber security
perspective.




Step 2: Pattern Recognition for Multiply Data Steam and
Data Sources
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Step 3: Correlate Patterns and Signatures = Knowledge base
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Why an experienced operator
can identify causes of an
event much quicker than an
inexperienced operator?

They can derive information
from seemingly unrelated

events by

e Detect the hidden patterns

* Assess the strong and weak
correlations based on
situations

* Access additional information
for making better judgeme




Proposed Work

Integrated Data Management for Anomaly
Detection and Cyber Vulnerability Assessment

(Sub-area: Data Management, Analytics, and Security)
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Goal: Integrated Data Management

Energy Management
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An illustration of the Anomaly Detection Process

PMU Data

Collect related Info to build
local views of the system event

Collect related Info to enrich
local views of the system event
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Proposed Approach

CAPER

Analyze information from multiple data sources
Capture subject-matter expertise in ontological model-based representation
Update knowledge base using real-time data and correlate data sources

Further reveal the nature of the anomaly and show that if the anomaly is caused by
nature events, man-made error or malicious attack

Assess the impact of the anomaly
Determine the severity (triaging of threat level)
Determine the level of response (from “do nothing” to “enter emergency operation”)

Provide guidance to utility operators on recommended steps (Enable alternate power
flow mechanisms? Shut down service? Block access to certain users? Throw away the
problematic data sets? Harden protection of certain devices?)

Ensure stable and reliable operation of the grid through the cyber-event



Power Flow Analysis Results with RTDS

* Operate under light load, bypass series
capacitors and overcompensate

* Operate under heavy load,
undercompensate, request higher voltage
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Only Series (No High Optimal Low
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Proposed Tasks and Milestones
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Proposed Tasks and Milestones

. Task 1: Data Requests (NCSU + UNCC)

Request PMU, SCADA, or smart meter data for baseline data quality quantification

Request PMU, SCADA, or smart meter data before, during, and after a system outage for anomaly detection
Interview with grid operation engineers for events detection procedures

Milestones:
1) Identify the system event detection scenarios
2)

Deliver training data sets associate with the baseline and the system event identified
Task 2: Benchmark the Signature (NCSU)

Establish the baseline data signatures for each data stream

Establish the baseline data patterns for multiple data stream and multiple data sources

Establish the knowledge base for detection a group of specified grid events
Milestones:

Deliver a signature database and a knowledge database for the target grid event (depending on which data sets we can get from
sponsors. )

. Task 3: Anomaly Detection (NCSU)
— Identify the indicators/precursors of a target system event
— Develop an algorithm for automating the process

— Implement the anomaly detection module and test them on RTDS

CAPER




Proposed Tasks and Milestones

e Task 4: Hard-ware-in-the-loop simulation for identifying the threat
levels and impacts (UNCC)
— Build an RTDS model for the selected system
— Integrate RTDS model with hardware control and protection components

e Task 5: Impact Study (UNCC)

— Insertion of series of identified threats into the system model to evaluate
impact at different threat levels
* ability of algorithms to converge and validate the threats
* ability of algorithms to locate and “triage” severity threats
* ability of algorithms to reconfigure and reroute data to isolate compromised assets

e Task 6: Identify mitigation methods (UNCC+ NCSU)
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Lead Principal Investigators
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Dr. Madhav Manjrekar, Associate Professor,

** University of North Carolina in Charlotte, led

technology and innovation teams in the
areas of green energy and power systems for
the past 15 years. Prior to joining academia
in 2012, Dr. Manjrekar was the VP of Global
Research and Innovation at Vestas (the wind
turbine company), and previously has held
various leadership and management
positions at Siemens, Eaton and ABB. His
research interests are in utility applications
of power electronics, renewable power
integration, energy storage, smart grids, and
cyber vulnerability of electrical

infrastructure.
\ 4
N\I/+

UINC CHARLOTTT

Dr. Lu has over 19 years of experience in electric
power engineering. From 2003 to 2012, Dr.
Ning Lu was a senior research engineer with
Pacific Northwest National Laboratory. She has
conducted and managed research projects in
modeling and analysis of power system load
behaviors, wide area energy storage
management systems, renewable integration,
climate impact on power grids, and smart grid
modeling and diagnosis. Dr. Lu is a senior
member of the Institute of Electrical and
Electronics Engineers. She has authored or co-
authored more than 60 publications, including
journal articles, conference proceedings, and

technical reports.




Proposed Budget
Pl | 2016 | 2017 | Total

CAPER

Madhav Manjrekar
Ning Lu

$72.4K
$72.4K

$144.8K

Budget Amount 2016 | 2017

Fringe Benefits
Tuition Remission

Travel

Materials & Supplies
Contract Support
Overhead (10%)
TOTAL

$36.2K S36.2K
$36.2K S36.2K
$72.4K $72.4K

1 GA UNCC 1 GA UNCC 1 GA
1 GA at NC State at NC State

$36,000 $36,000

$4,958 $4,958

$17,128 $17,128

$2,500 $2,500

$4,000 $4,000

$1,250 $1,250

$6,584 $6,584

$72,420 $72,420

$72,000
$9,916
$34,256
$5,000
$8,000
$2,500

$13,168
$144,840




