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Motivation

Energy sector tops US 
industries under attack

ICS-CERT reported 245 
incidents
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Overarching Approach: More than “being compliant”
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Ten, Chee-Wooi, Chen-Ching Liu, and Govindarasu Manimaran. "Vulnerability assessment 
of cybersecurity for SCADA systems." Power Systems, IEEE Transactions on 23.4 (2008)
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Summary of Previous Work

• Hardware-in-the-loop Network Analysis for Critical 
Infrastructure Protection (UNC Charlotte)

• Multi-layer Data-driven Reasoning Tool for Anomaly 
Detection and Causality Analysis (NC State)
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List of Assets and Control Levers
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Laboratory Demonstration Setup

RTDS
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Fault Simulation Results with RTDS

Yellow: 230kV bus at Dorsey Blue: 500kV bus at Forbes Pink: 345kV bus at Chisago

Fault is located at Roseau causing the Dorsey side distance relay protection to activate
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Power Flow Analysis Results with RTDS
Real Power Demand 100MW 300MW 500MW 

Shunt + Series 
Compensation 

Very High 
Compensation 

High 
Compensation 

Optimal 
Compensation 

Only Series (No 
Shunt) Compensation 

High 
Compensation 

Optimal 
Compensation 

Low 
Compensation 

No Compensation 

Medium High twist in 
system voltages 

Voltages at Roseau 
above 8% over-
voltage limit. 
Voltages at Chisago 
below 3% under-
voltage limit. 

Medium Low twist in 
system voltages 

Voltages at Roseau 
above 7% over-
voltage limit. 
Voltages at Chisago 
below 2% under-
voltage limit. 

Low twist in      
system voltages 

Voltages at Roseau 
above 5% over-
voltage limit. 
Voltages at Chisago 
below 1% under-
voltage limit. 

Only Shunt (No 
Series) Compensation 

High twist in      
system voltages 

Voltages at Roseau 
above 10% over-
voltage limit. 
Voltages at Chisago 
below 6% under-
voltage limit. 

Medium High twist in 
system voltages 

Voltages at Roseau 
above 9% over-
voltage limit. 
Voltages at Chisago 
below 5% under-
voltage limit. 

Medium Low twist in 
system voltages 

Voltages at Roseau 
above 8% over-
voltage limit. 
Voltages at Chisago 
below 4% under-
voltage limit. 

 Real Power Demand 100MW 300MW 500MW 

Variable Shunt + 
Series Compensation 

VLL = 0.86 VLL = 0.86 VLL = 0.84 

VUL = 1.04 VUL = 1.02 VUL = 1.00 

Only Variable Shunt 
(No Series) 

Compensation 

VLL = 0.88 VLL = 0.88 VLL = 0.86 

VUL = 1.10 VUL = 1.04 VUL = 1.06 

 

• Operate under light load, bypass series 
capacitors and overcompensate

• Operate under heavy load, 
undercompensate, request higher voltage
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Summary of Previous Work

• Hardware-in-the-loop Network Analysis for Critical 
Infrastructure Protection (UNC Charlotte)

• Multi-layer Data-driven Reasoning Tool for Anomaly 
Detection and Causality Analysis (NC State)
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Multi-layer Data-driven Reasoning Tool (M-DART)

SCADA PMU
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M-DART Project: Multi-layer Data Anomaly Analysis

Data ha  “ inger print ” too. 
There are certain signatures 
for abnormal data streams.

Device malfunctions, faults 
caused by natural events, 
man-made errors, cyber-
attacks have different 
signatures.

Data collected from different 
sources can be used to verify 
each other.
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Step 1. Data Quality Quantification for Each Data Steam

Pay special attention to: 
• Missing data
• Outliers
• Bad data

“Good data  et ” are 
selected for analysis so 
the  don’t contaminate 
results.
“Bad data  et ” reveal  
more information from 
cyber security 
perspective. 

What is unique in DQQ?
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Multiple Channels 
from multiple PMUs

Multiple Channels 
from the same PMU

Step 2: Pattern Recognition for Multiply Data Steam and 
Data Sources
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Step 3: Correlate Patterns and Signatures  Knowledge base 
Why an experienced operator 
can identify causes of an 
event much quicker than an 
inexperienced operator? 

They can derive information 
from seemingly unrelated 
events by
• Detect the hidden patterns
• Assess the strong and weak 

correlations based on 
situations

• Access additional information 
for making better judgements 

Structured and unstructured information
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Proposed Work

Integrated Data Management for Anomaly 

Detection and Cyber Vulnerability Assessment

(Sub-area: Data Management, Analytics, and Security)
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SCADA PMU
Smart 
Meter

Physical Layers: Electric Power Grids
Transmission and Sub-transmission 

Data Repository

Energy Management 
System 

(State Estimation, 
Contingency Analysis)

Domain 
anomaly 
detection

Group 
anomaly 
detection

Model-Based 
Anomaly 
Detection

Other Data Source

Local 
View

Global View

Local 
View

Local 
View

Physical Layers: Special Events

Physical Layers: Extreme Weather

PMU--Phasor Measurement Unit
SCADA--Supervisory Control and 
Data Acquisition 

The current monitoring and alarm 
system is highlighted in yellow. The 
proposed  cyber-radar components 
are highlighted in green.

Grid operator interactions  

Goal: Integrated Data Management

Single layer


multiple layers

Local


Global
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PMU Data

SCADA Data

An illustration of the Anomaly Detection Process
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Proposed Approach
• Analyze information from multiple data sources

• Capture subject-matter expertise in ontological model-based representation

• Update knowledge base using real-time data and correlate data sources

• Further reveal the nature of the anomaly and show that if the anomaly is caused by 
nature events, man-made error or malicious attack

• Assess the impact of the anomaly

• Determine the severity (triaging of threat level)

• Determine the level o  re pon e ( rom “do nothing” to “enter emergenc  operation”)

• Provide guidance to utility operators on recommended steps (Enable alternate power 
flow mechanisms? Shut down service? Block access to certain users? Throw away the 
problematic data sets? Harden protection of certain devices?)

• Ensure stable and reliable operation of the grid through the cyber-event
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Power Flow Analysis Results with RTDS
Real Power Demand 100MW 300MW 500MW 

Shunt + Series 
Compensation 

Very High 
Compensation 

High 
Compensation 

Optimal 
Compensation 

Only Series (No 
Shunt) Compensation 

High 
Compensation 

Optimal 
Compensation 

Low 
Compensation 

No Compensation 

Medium High twist in 
system voltages 

Voltages at Roseau 
above 8% over-
voltage limit. 
Voltages at Chisago 
below 3% under-
voltage limit. 

Medium Low twist in 
system voltages 

Voltages at Roseau 
above 7% over-
voltage limit. 
Voltages at Chisago 
below 2% under-
voltage limit. 

Low twist in      
system voltages 

Voltages at Roseau 
above 5% over-
voltage limit. 
Voltages at Chisago 
below 1% under-
voltage limit. 

Only Shunt (No 
Series) Compensation 

High twist in      
system voltages 

Voltages at Roseau 
above 10% over-
voltage limit. 
Voltages at Chisago 
below 6% under-
voltage limit. 

Medium High twist in 
system voltages 

Voltages at Roseau 
above 9% over-
voltage limit. 
Voltages at Chisago 
below 5% under-
voltage limit. 

Medium Low twist in 
system voltages 

Voltages at Roseau 
above 8% over-
voltage limit. 
Voltages at Chisago 
below 4% under-
voltage limit. 

 Real Power Demand 100MW 300MW 500MW 

Variable Shunt + 
Series Compensation 

VLL = 0.86 VLL = 0.86 VLL = 0.84 

VUL = 1.04 VUL = 1.02 VUL = 1.00 

Only Variable Shunt 
(No Series) 

Compensation 

VLL = 0.88 VLL = 0.88 VLL = 0.86 

VUL = 1.10 VUL = 1.04 VUL = 1.06 

 

• Operate under light load, bypass series 
capacitors and overcompensate

• Operate under heavy load, 
undercompensate, request higher voltage
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Proposed Tasks and Milestones

• Creation of a power flow simulation model of candidate transmission line with 
embedded synchrophasors

• Creation of distributed communication network model for synchrophasors
 Analysis of distributed phasor state estimation algorithms under normal conditions

• Insertion of series of threats at vulnerable points at different threat levels
 Analysis of distributed phasor state estimation algorithms under threat conditions

 Quantify
• ability of algorithms to converge and provide accurate state
• ability of algorithms to locate and “triage”  everit  threats
• ability of algorithms to reconfigure and reroute data to isolate compromised assets
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Proposed Tasks and Milestones

• Task 1: Data Requests (NCSU + UNCC)

– Request PMU, SCADA, or smart meter data for baseline data quality quantification

– Request PMU, SCADA, or smart meter data before, during, and after a system outage for anomaly detection

– Interview with grid operation engineers for events detection procedures

Milestones: 

1) Identify the system event detection scenarios

2) Deliver training data sets associate with the baseline and the system event identified

• Task 2: Benchmark the Signature (NCSU)

– Establish the baseline data signatures for each data stream

– Establish the baseline data patterns for multiple data stream and multiple data sources

– Establish the knowledge base for detection a group of specified grid events

Milestones: 

Deliver a signature database and a knowledge database for the target grid event (depending on which data sets we can get from 
sponsors. )

• Task 3: Anomaly Detection (NCSU)

– Identify the indicators/precursors of a target system event

– Develop an algorithm for automating the process

– Implement the anomaly detection module and test them on RTDS
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Proposed Tasks and Milestones

• Task 4: Hard-ware-in-the-loop simulation for identifying the threat 
levels and impacts (UNCC)
– Build an RTDS model for the selected system

– Integrate RTDS model with hardware control and protection components

• Task 5: Impact Study (UNCC)
– Insertion of series of identified threats into the system model to evaluate 

impact at different threat levels
• ability of algorithms to converge and validate the threats

• abilit  o  algorithm  to locate and “triage”  everit  threat 

• ability of algorithms to reconfigure and reroute data to isolate compromised assets

• Task 6: Identify mitigation methods (UNCC+ NCSU)
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Lead Principal Investigators

Dr. Lu has over 19 years of experience in electric
power engineering. From 2003 to 2012, Dr.
Ning Lu was a senior research engineer with
Pacific Northwest National Laboratory. She has
conducted and managed research projects in
modeling and analysis of power system load
behaviors, wide area energy storage
management systems, renewable integration,
climate impact on power grids, and smart grid
modeling and diagnosis. Dr. Lu is a senior
member of the Institute of Electrical and
Electronics Engineers. She has authored or co-
authored more than 60 publications, including
journal articles, conference proceedings, and
technical reports.

Dr. Madhav Manjrekar, Associate Professor,
University of North Carolina in Charlotte, led
technology and innovation teams in the
areas of green energy and power systems for
the past 15 years. Prior to joining academia
in 2012, Dr. Manjrekar was the VP of Global
Research and Innovation at Vestas (the wind
turbine company), and previously has held
various leadership and management
positions at Siemens, Eaton and ABB. His
research interests are in utility applications
of power electronics, renewable power
integration, energy storage, smart grids, and
cyber vulnerability of electrical
infrastructure.
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Proposed Budget

PI 2016 2017 Total

Madhav Manjrekar $36.2K $36.2K $72.4K

Ning Lu $36.2K $36.2K $72.4K

$72.4K $72.4K $144.8K

Budget Amount 2016 2017 Total

1 GA UNCC 

1 GA at NC State

1 GA UNCC 1 GA 

at NC State

Salaries $36,000 $36,000 $72,000

Fringe Benefits $4,958 $4,958 $9,916

Tuition Remission $17,128 $17,128 $34,256

Equipment $2,500 $2,500 $5,000

Travel $4,000 $4,000 $8,000

Materials & Supplies $1,250 $1,250 $2,500

Contract Support

Overhead (10%) $6,584 $6,584 $13,168

TOTAL $72,420 $72,420 $144,840


