Modernizing Electric Grids to Meet the Demands of a Modern World

CAPER Spring 2018 Meeting

Dr. Domenico "Mimmo" Parisi
Professor and Executive Director, NSPARC

March 12, 2018

Why do we need to modernize America's electric Grid?

Aging Infrastructure

- Our electrical infrastructure is aging and inadequate for modern times
- Built in the Eisenhower era and designed primarily for transmitting electricity from large centralized power plants fueled by coal or natural gas

Environmental concerns

- Fossil fuels are the main source of energy in America and modernization would allow us to tap into renewable energy sources
- Establish a voluntary market for trading electricity between states via automated systems

Managing Variability Inherent to wind and solar power

- Renewable energy use requires modern grids that address variability in energy production and distribution
- Grids need to be flexible enough to connect local sources of electrical generation to areas of high energy demand
- Flexible modern systems have to be able to accommodate rooftop solar and battery storage

Economic loss

Economic loss

- Weather-related outages cost the U.S. billions annually (estimated)
- Costs take various forms:
 - Lost output and wages
 - Spoiled inventory
 - Delayed production
 - Inconvenience
 - Damage to the electric grid

Economic Loss

- Economic loss due to power outages during Hurricane Katrina caused bankruptcy of the investor-owned utility
- Restoration costs ranged from \$260 \$325 million, and the loss of customer revenue was estimated at \$147 million
- After Hurricane Rita, utility providers in affected areas reported needing \$2.5 billion to recover

Distribution of billion-dollar disasters

- A modern power grid = a resilient power grid
- A resilient power grid is:
 - Robust, stable, and adaptive
 - It is able to withstand unexpected destructive events without degraded performance and data from events must be utilized for future adaptation of the grid
 - Flexible
 - It is able to switch between modes of operation to protect system integrity

Resourceful and Agile

 It is capable of identifying environmental patterns so it can switch modes prior to disruption

Capable of Coordination and Foresight

 It is able to be connected to a larger system so preparation and recovery actions can be coordinated

Redundant

 It contains redundant components available to maintain grid operation in the case of failure in other components

Diverse

 Its infrastructure should consist of diverse patterns, structure, supply resources, providers, and output methods

Collaborative

 It should be designed with input from an extensive range of stakeholders to ensure a wide range of opinions and expertise are considered

Efficient

It should have a high-energy return on available resources

Resiliency Through Data Science

- Resiliency calls for the use of modern technology that gathers, stores, and processes data in real time
- This is achieved through data science

How Can we move forward?

Taking a data science-based approach

- Transformative ideas
- Convert ideas into practical, innovative solutions
- Public policy
- Building the right workforce

